On Δ -spaces X and their characterization in terms of spaces $C_p(X)$

JERZY KÁKOL

A. MICKIEWICZ UNIVERSITY, POZNAŃ

January 27, 2022

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

・ 同 ト ・ ヨ ト ・ ヨ ト

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

イロト イヨト イヨト イヨト

æ

• An uncountable $D \subset \mathbb{R}$ is a Δ -set if for any decreasing sequence $(H_n)_n$ of subsets of D with $\bigcap_n H_n = \emptyset$ there is a sequence $(V_n)_n$ of G_{δ} -subsets of D s.t. $H_n \subset V_n$, $n \in \mathbb{N}$, and $\bigcap_n V_n = \emptyset$ (Reed 1975).

- An uncountable $D \subset \mathbb{R}$ is a Δ -set if for any decreasing sequence $(H_n)_n$ of subsets of D with $\bigcap_n H_n = \emptyset$ there is a sequence $(V_n)_n$ of G_{δ} -subsets of D s.t. $H_n \subset V_n$, $n \in \mathbb{N}$, and $\bigcap_n V_n = \emptyset$ (Reed 1975).
- Research around Δ-sets and Q-sets (D ⊂ ℝ is a Q-set if each subset of D is G_δ in D) are still fundamental challenges in set theory.

- An uncountable $D \subset \mathbb{R}$ is a Δ -set if for any decreasing sequence $(H_n)_n$ of subsets of D with $\bigcap_n H_n = \emptyset$ there is a sequence $(V_n)_n$ of G_{δ} -subsets of D s.t. $H_n \subset V_n$, $n \in \mathbb{N}$, and $\bigcap_n V_n = \emptyset$ (Reed 1975).
- Research around Δ-sets and Q-sets (D ⊂ ℝ is a Q-set if each subset of D is G_δ in D) are still fundamental challenges in set theory.
- Solution Reed showed: the term " G_{δ} " can be replaced with "open".

(김희) (국왕) (국왕) 영양

- An uncountable $D \subset \mathbb{R}$ is a Δ -set if for any decreasing sequence $(H_n)_n$ of subsets of D with $\bigcap_n H_n = \emptyset$ there is a sequence $(V_n)_n$ of G_{δ} -subsets of D s.t. $H_n \subset V_n$, $n \in \mathbb{N}$, and $\bigcap_n V_n = \emptyset$ (Reed 1975).
- Research around Δ-sets and Q-sets (D ⊂ ℝ is a Q-set if each subset of D is G_δ in D) are still fundamental challenges in set theory.
- Solution Reed showed: the term " G_{δ} " can be replaced with "open".
- <u>The existence</u> of a Δ-set is <u>equivalent</u> to the existence of a countably paracompact (every countable open cover has a locally finite open refinement), <u>separable non-normal</u> Moore space (Przymusiński).

- An uncountable $D \subset \mathbb{R}$ is a Δ -set if for any decreasing sequence $(H_n)_n$ of subsets of D with $\bigcap_n H_n = \emptyset$ there is a sequence $(V_n)_n$ of G_{δ} -subsets of D s.t. $H_n \subset V_n$, $n \in \mathbb{N}$, and $\bigcap_n V_n = \emptyset$ (Reed 1975).
- Research around Δ-sets and Q-sets (D ⊂ ℝ is a Q-set if each subset of D is G_δ in D) are still fundamental challenges in set theory.
- **③** Reed showed: the term " G_{δ} " can be replaced with "open".
- <u>The existence</u> of a Δ-set is <u>equivalent</u> to the existence of a countably paracompact (every countable open cover has a locally finite open refinement), separable non-normal Moore space (Przymusiński).
- See also R. W. Knight, Δ-Sets, Trans. Amer. Math. Soc.
 339 (1993), 45-60.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

The existence of a Q-set is a fundamental question of set theory considered by Hausdorff, Sierpinski, Rothberger over thirty years ago, and by many others.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The existence of a Q-set is a fundamental question of set theory considered by Hausdorff, Sierpinski, Rothberger over thirty years ago, and by many others.
- O The existence of uncountable Q-sets is independent of ZFC. Q-set ⇒ Δ-set; consistently the converse fails.

(日本) (日本) (日本)

- The existence of a Q-set is a fundamental question of set theory considered by Hausdorff, Sierpinski, Rothberger over thirty years ago, and by many others.
- O The existence of uncountable Q-sets is independent of ZFC. Q-set ⇒ Δ-set; consistently the converse fails.
- Judah, Shelah constructed a model where a Q-set exists.

(日本) (日本) (日本)

- The existence of a Q-set is a fundamental question of set theory considered by Hausdorff, Sierpinski, Rothberger over thirty years ago, and by many others.
- The existence of uncountable Q-sets is independent of ZFC. Q-set ⇒ Δ-set; consistently the converse fails.
- Judah, Shelah constructed a model where a Q-set exists.
- <u>Martin's Axiom</u> plus the negation of (CH) implies that <u>every subset</u> X of \mathbb{R} with $|X| < \mathfrak{c}$ is a \mathbb{Q} -set, (hence is a Δ -set) (Fleissner, Miller, M. Rudin).

- The existence of a Q-set is a fundamental question of set theory considered by Hausdorff, Sierpinski, Rothberger over thirty years ago, and by many others.
- Provide the existence of uncountable Q-sets is independent of ZFC. Q-set ⇒ Δ-set; consistently the converse fails.
- Judah, Shelah constructed a model where a Q-set exists.
- <u>Martin's Axiom</u> plus the negation of (CH) implies that <u>every subset</u> X of \mathbb{R} with $|X| < \mathfrak{c}$ is a \mathbb{Q} -set, (hence is a Δ -set) (Fleissner, Miller, M. Rudin).
- No Δ-set can have cardinality c, therefore Continuum Hypothesis implies that there is no uncountable Δ-set of reals (Przymusiński).

- The existence of a Q-set is a fundamental question of set theory considered by Hausdorff, Sierpinski, Rothberger over thirty years ago, and by many others.
- The existence of uncountable Q-sets is independent of ZFC. Q-set ⇒ Δ-set; consistently the converse fails.
- ho Judah, Shelah constructed a model where a \mathbb{Q} -set exists.
- <u>Martin's Axiom</u> plus the negation of (CH) implies that <u>every subset</u> X of \mathbb{R} with $|X| < \mathfrak{c}$ is a \mathbb{Q} -set, (hence is a Δ -set) (Fleissner, Miller, M. Rudin).
- No Δ-set can have cardinality c, therefore Continuum Hypothesis implies that there is no uncountable Δ-set of reals (Przymusiński).
- Uncountable Δ-sets of reals <u>exist or not</u>, depending on a model of the set theory.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

A topological space X is called a Δ -space if for every decreasing sequence $(D_n)_n$ of subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X, $D_n \subset V_n$ for every $n \in N$ and $\bigcap_n V_n = \emptyset$.

A topological space X is called a Δ -space if for every decreasing sequence $(D_n)_n$ of subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X, $D_n \subset V_n$ for every $n \in N$ and $\bigcap_n V_n = \emptyset$.

The existence of an uncount. separable metrizable
 Δ-space is equiv. to the existence of an uncount. Δ-set.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A topological space X is called a Δ -space if for every decreasing sequence $(D_n)_n$ of subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X, $D_n \subset V_n$ for every $n \in N$ and $\bigcap_n V_n = \emptyset$.

- The existence of an uncount. separable metrizable
 Δ-space is equiv. to the existence of an uncount. Δ-set.
- Indeed, every separable metrizable space embeds into a Polish space ℝ^N, and ℝ^N is a one-to-one continuous image of irrationals J. Hence, if M is uncountable separable metrizable, there exist an uncountable set X ⊂ ℝ and a one-to-one continuous surjection X → M. Clearly X is a Δ-set provided M is a Δ-space.

A topological space X is called a Δ -space if for every decreasing sequence $(D_n)_n$ of subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X, $D_n \subset V_n$ for every $n \in N$ and $\bigcap_n V_n = \emptyset$.

- The existence of an uncount. separable metrizable
 Δ-space is equiv. to the existence of an uncount. Δ-set.
- Indeed, every separable metrizable space embeds into a Polish space ℝ^N, and ℝ^N is a one-to-one continuous image of irrationals J. Hence, if M is uncountable separable metrizable, there exist an uncountable set X ⊂ ℝ and a one-to-one continuous surjection X → M. Clearly X is a Δ-set provided M is a Δ-space.
- Non-metrizable Δ -spaces exist in ZFC.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

(日) (四) (三) (三) (三)

• Cosmic X with $|X| = \mathfrak{c}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のくで

- Cosmic X with $|X| = \mathfrak{c}$.
- Under (MA) and negation (CH) every cosmic X with $|X| < \mathfrak{c}$ is a Δ -space.

(ロ) (部) (E) (E) (E)

- Cosmic X with $|X| = \mathfrak{c}$.
- Under (MA) and negation (CH) every cosmic X with |X| < c is a Δ-space.
- The Sorgenfrey line S.

- Cosmic X with $|X| = \mathfrak{c}$.
- Under (MA) and negation (CH) every cosmic X with $|X| < \mathfrak{c}$ is a Δ -space.
- The Sorgenfrey line S.
- The Michael line.

- Cosmic X with $|X| = \mathfrak{c}$.
- Under (MA) and negation (CH) every cosmic X with |X| < c is a Δ-space.
- The Sorgenfrey line S.
- The Michael line.
- The double arrow space.

- 4 同 ト - 4 ヨ ト - 4 ヨ ト

э

- Cosmic X with $|X| = \mathfrak{c}$.
- Under (MA) and negation (CH) every cosmic X with $|X| < \mathfrak{c}$ is a Δ -space.
- The Sorgenfrey line S.
- The Michael line.
- The double arrow space.
- Hered. separable X with $|X| = \mathfrak{c}$ (Szeptycki, Leiderman).
- Each Tychonoff space X such that $|X| = 2^{2^{d(X)}}$.

・ 通 ト ・ ヨ ト ・ ヨ ト

- Cosmic X with $|X| = \mathfrak{c}$.
- Under (MA) and negation (CH) every cosmic X with $|X| < \mathfrak{c}$ is a Δ -space.
- The Sorgenfrey line S.
- The Michael line.
- The double arrow space.
- Hered. separable X with $|X| = \mathfrak{c}$ (Szeptycki, Leiderman).
- Each Tychonoff space X such that $|X| = 2^{2^{d(X)}}$.
- Each separable X with $|X| = 2^c$.

- Cosmic X with $|X| = \mathfrak{c}$.
- Under (MA) and negation (CH) every cosmic X with $|X| < \mathfrak{c}$ is a Δ -space.
- The Sorgenfrey line S.
- The Michael line.
- The double arrow space.
- Hered. separable X with $|X| = \mathfrak{c}$ (Szeptycki, Leiderman).
- Each Tychonoff space X such that $|X| = 2^{2^{d(X)}}$.
- Each separable X with $|X| = 2^c$.
- Pence βQ, βR and βN are not Δ-spaces. What about positive examples ?

- Cosmic X with $|X| = \mathfrak{c}$.
- Under (MA) and negation (CH) every cosmic X with $|X| < \mathfrak{c}$ is a Δ -space.
- The Sorgenfrey line S.
- The Michael line.
- The double arrow space.
- Hered. separable X with $|X| = \mathfrak{c}$ (Szeptycki, Leiderman).
- Each Tychonoff space X such that $|X| = 2^{2^{d(X)}}$.
- Each separable X with $|X| = 2^c$.
- Pence βQ, βR and βN are not Δ-spaces. What about positive examples ?
- C_p(X), C_k(X) spaces of all real-valued cont. functions on Tychonoff X with the pointwise and the compact-open topology, respectively.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

• $C_p(X)$ is called *distinguished* if for each bounded $A \subset \mathbb{R}^X$ there is bounded $B \subset C_p(X)$ with $A \subset \overline{B}$, the closure in \mathbb{R}^X (Ferrando, Kąkol, Leiderman, Saxon).

- 4 문 4 문 4 문 4 문 5 문 문

C_p(X) is called *distinguished* if for each bounded A ⊂ ℝ^X there is bounded B ⊂ C_p(X) with A ⊂ B

 R^X (Ferrando, Kakol, Leiderman, Saxon).

Theorem 2

The following statements are equivalent for Tychonoff X:
(a) Dual C_p(X)'_β = (L_p(X), β(L_p(X), C_p(X)) carries the finest l.c. topology, where L_p(X) = span{δ_x : x ∈ X}.
(b) The space C_p(X) is distinguished.
(c) ∀ f ∈ ℝ^X ∃ bounded B ⊂ C_p(X) with f ⊂ B, the closure in ℝ^X (Ferrando, Kąkol, Leiderman, Saxon).
(d) X is a Δ-space (Kąkol, Leiderman).

C_p(X) is called *distinguished* if for each bounded A ⊂ ℝ^X there is bounded B ⊂ C_p(X) with A ⊂ B

 R^X (Ferrando, Kakol, Leiderman, Saxon).

Theorem 2

The following statements are equivalent for Tychonoff X:

- (a) Dual $C_p(X)'_{\beta} = (L_p(X), \beta(L_p(X), C_p(X)))$ carries the finest l.c. topology, where $L_p(X) = span\{\delta_x : x \in X\}$.
- (b) The space $C_p(X)$ is distinguished.
- (c) $\forall f \in \mathbb{R}^X \exists bounded B \subset C_p(X)$ with $f \subset \overline{B}$, the closure

in \mathbb{R}^{X} (Ferrando, Kąkol, Leiderman,Saxon).

(d) X is a \triangle -space (Kąkol, Leiderman).

From (c) \Rightarrow Every countable Tychonoff space is a Δ -space.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

X is scattered if every nonempty subset A ⊂ X has an isolated point in A.

・ロト ・聞ト ・ヨト ・ヨト

X is scattered if every nonempty subset A ⊂ X has an isolated point in A.

2 When a Δ -space is scasttered?

(四) (日) (日)

э

X is scattered if every nonempty subset A ⊂ X has an isolated point in A.

2 When a Δ -space is scasttered?

Theorem 3 (Kąkol-Leiderman (PAMS))

Every Čech-complete (hence compact) Δ -space is scattered. Every countably compact Δ -space is scattered.

A (2) > (

X is scattered if every nonempty subset A ⊂ X has an isolated point in A.

2 When a Δ -space is scasttered?

Theorem 3 (Kąkol-Leiderman (PAMS))

Every Čech-complete (hence compact) Δ -space is scattered. Every countably compact Δ -space is scattered.

Theorem 3 extends also a result of Knaster-Urbanik that every countable Čech-complete space is scattered.

A (2) > (

X is scattered if every nonempty subset A ⊂ X has an isolated point in A.

2 When a Δ -space is scasttered?

Theorem 3 (Kąkol-Leiderman (PAMS))

Every Čech-complete (hence compact) Δ -space is scattered. Every countably compact Δ -space is scattered.

Theorem 3 extends also a result of Knaster-Urbanik that every countable Čech-complete space is scattered.

Corollary 4

If X is a first-countable compact space, then X is a Δ -space iff X is countable.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

 Eberlein compact is a compact space homeomorphic to a subset of a Banach space with the weak topology.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

- Eberlein compact is a compact space homeomorphic to a subset of a Banach space with the weak topology.
- A compact space is Corson compact if it can be embedded in a Σ-product of R.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Eberlein compact is a compact space homeomorphic to a subset of a Banach space with the weak topology.
- A compact space is Corson compact if it can be embedded in a Σ-product of R.
- Every Eberlein compact is Corson, every scattered Corson compact space is a scattered Eberlein (Alster).

(4月) (1日) (日) 日

- Eberlein compact is a compact space homeomorphic to a subset of a Banach space with the weak topology.
- A compact space is Corson compact if it can be embedded in a Σ-product of R.
- Every Eberlein compact is Corson, every scattered Corson compact space is a scattered Eberlein (Alster).
- The most simple non-metrizable scattered Eberlein compact: Alexandrov comp. αX, X uncountable discrete.

- Eberlein compact is a compact space homeomorphic to a subset of a Banach space with the weak topology.
- A compact space is Corson compact if it can be embedded in a Σ-product of R.
- Every Eberlein compact is Corson, every scattered Corson compact space is a scattered Eberlein (Alster).
- The most simple non-metrizable scattered Eberlein compact: Alexandrov comp. αX, X uncountable discrete.

Theorem 5 (Ferrando, Kąkol, Leiderman, Saxon)

An Eberlein compact space X is a Δ -space iff X is scattered.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

・ロト ・日・・日・・日・・日・

÷

A pseudocompact Δ -space X with countable tightness is scattered.

▲御→ ▲注→ ★注→

æ

A pseudocompact Δ -space X with countable tightness is scattered.

 An example of a compact scattered Δ-space X which is not Eberlein compact:

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A pseudocompact Δ -space X with countable tightness is scattered.

- An example of a compact scattered Δ-space X which is not Eberlein compact:
- ② Let 𝔅 be an almost disjoint family of subsets of ℕ. The Isbell-Mrówka space Ψ(𝔅) has ℕ ∪ 𝔅 as the underlying set equipped with the topology defined as follows:

・ 同 ト ・ ヨ ト ・ ヨ ト

A pseudocompact Δ -space X with countable tightness is scattered.

- An example of a compact scattered Δ-space X which is not Eberlein compact:
- Q Let 𝔅 be an almost disjoint family of subsets of ℕ. The Isbell-Mrówka space Ψ(𝔅) has ℕ ∪ 𝔅 as the underlying set equipped with the topology defined as follows:
- For each n∈ N, the set {n} is open, and for each A∈ A, a base of neighbourhoods of A is the family of all sets {A} ∪ (A \ F), where F runs over all finite subsets of N.

A pseudocompact Δ -space X with countable tightness is scattered.

- An example of a compact scattered Δ-space X which is not Eberlein compact:
- Q Let 𝔅 be an almost disjoint family of subsets of ℕ. The Isbell-Mrówka space Ψ(𝔅) has ℕ ∪ 𝔅 as the underlying set equipped with the topology defined as follows:
- For each n∈ N, the set {n} is open, and for each A∈ A, a base of neighbourhoods of A is the family of all sets {A} ∪ (A \ F), where F runs over all finite subsets of N.
- Then Ψ(𝔅) is a first-countable separable locally compact Tychonoff space.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Theorem 7 (Kakol-Leiderman)

There exists a separable scattered compact space X which is a Δ -space not being Eberlein compact.

A (2) > (

Theorem 7 (Kạkol-Leiderman)

There exists a separable scattered compact space X which is a Δ -space not being Eberlein compact.

• Skech of the proof: Let \mathfrak{A} be any uncountable almost disjoint family of subsets of N, let $Z = \Psi(\mathfrak{A})$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem 7 (Kạkol-Leiderman)

There exists a separable scattered compact space X which is a Δ -space not being Eberlein compact.

- Skech of the proof: Let \mathfrak{A} be any uncountable almost disjoint family of subsets of N, let $Z = \Psi(\mathfrak{A})$.
- One shows Z is a scattered Δ-space. Let X = the one-point compactification of Z. Then X is a Δ-space.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem 7 (Kạkol-Leiderman)

There exists a separable scattered compact space X which is a Δ -space not being Eberlein compact.

- Skech of the proof: Let \mathfrak{A} be any uncountable almost disjoint family of subsets of N, let $Z = \Psi(\mathfrak{A})$.
- One shows Z is a scattered Δ-space. Let X = the one-point compactification of Z. Then X is a Δ-space.
- X is not Eberlein, since every separable Eberlein compact space is metrizable, but Ψ(𝔅) is metrizable iff 𝔅 is countable.

・ 同下 ・ ヨト ・ ヨト

(日) (四) (三) (三) (三)

Theorem 8 (Kakol-Leidermnan)

The compact scattered space $[0, \omega_1]$ is not a Δ -space.

イロト イポト イヨト イヨト

э

Theorem 8 (Kakol-Leidermnan)

The compact scattered space $[0, \omega_1]$ is not a Δ -space.

Since every infinite compact scattered space X contains a nontrivial converging sequence, for such X the Banach space C(X) is not a Grothendieck space.

Theorem 8 (Kakol-Leidermnan)

The compact scattered space $[0, \omega_1]$ is not a Δ -space.

 Since every infinite compact scattered space X contains a nontrivial converging sequence, for such X the Banach space C(X) is not a Grothendieck space.

Corollary 9

If X is an infinite compact space and $X \in \Delta$, then the Banach space C(X) is not a Grothendieck space. The converse fails, as $X = [0, \omega_1]$ applies.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

(四) (말) (말)

Proposition 10 (Kakol-Leiderman)

Any σ -scattered metrizable (and separable) space is a Δ -space (and countable).

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition 10 (Kakol-Leiderman)

Any σ -scattered metrizable (and separable) space is a Δ -space (and countable).

(2) below extend Przymusiński's fact for Δ -sets in \mathbb{R} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proposition 10 (Kakol-Leiderman)

Any σ -scattered metrizable (and separable) space is a Δ -space (and countable).

(2) below extend Przymusiński's fact for Δ -sets in \mathbb{R} .

Corollary 11

(1) The existence of an uncountable sep. metrizable Δ -space is independent of ZFC.

(2) There is an uncountable sep. metrizable Δ -space iff there is a sep. countably paracompact non-normal Moore space.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

(四) (日) (日)

Proposition 12 (Hr*ŭsá*k)

There exists in ZFC a family \mathfrak{A} on N such that the corresponding Isbell–Mrówka space $\Psi(\mathfrak{A})$ admits a continuous mapping onto the closed interval [0, 1].

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition 12 (Hr*ŭsá*k)

There exists in ZFC a family \mathfrak{A} on N such that the corresponding Isbell–Mrówka space $\Psi(\mathfrak{A})$ admits a continuous mapping onto the closed interval [0, 1].

Proposition 13

Assume X is a countable union of closed subsets X_n each of them is a Δ -space. Then X is a Δ -space.

(本部) (本語) (本語)

Proposition 12 (Hr*ŭsá*k)

There exists in ZFC a family \mathfrak{A} on N such that the corresponding Isbell–Mrówka space $\Psi(\mathfrak{A})$ admits a continuous mapping onto the closed interval [0, 1].

Proposition 13

Assume X is a countable union of closed subsets X_n each of them is a Δ -space. Then X is a Δ -space.

Corollary 14

Cont. images of Lindelöf Čech-complete Δ -spaces are Δ -sp.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Following A. V. Arkhangel'skii we say that a top. space Y is ℓ-dominated by a top. space X if C_p(X) can be mapped onto C_p(Y) by a linear continuous map T.

- Following A. V. Arkhangel'skii we say that a top. space Y is ℓ-dominated by a top. space X if C_p(X) can be mapped onto C_p(Y) by a linear continuous map T.
- Recall the following general motivation fact: For Tychonoff spaces X and Y, the rings C_p(X) and C_p(Y) are topologically isomorphic iff X and Y are homeomorphic (Nagata).

- Following A. V. Arkhangel'skii we say that a top. space Y is ℓ-dominated by a top. space X if C_p(X) can be mapped onto C_p(Y) by a linear continuous map T.
- Recall the following general motivation fact: For Tychonoff spaces X and Y, the rings C_p(X) and C_p(Y) are topologically isomorphic iff X and Y are homeomorphic (Nagata).

Theorem 15 (Kąkol-Leiderman)

Assume that Y is ℓ -dominated by X. If X is a Δ -space, then Y also is a Δ -space.

- Following A. V. Arkhangel'skii we say that a top. space Y is ℓ-dominated by a top. space X if C_p(X) can be mapped onto C_p(Y) by a linear continuous map T.
- Recall the following general motivation fact: For Tychonoff spaces X and Y, the rings C_p(X) and C_p(Y) are topologically isomorphic iff X and Y are homeomorphic (Nagata).

Theorem 15 (Kąkol-Leiderman)

Assume that Y is ℓ -dominated by X. If X is a Δ -space, then Y also is a Δ -space.

In Theorem 15 linearity of T cannot be dropped.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Indeed, Y - metrizable separable, |Y| = c s.t. C_k(Y) is analytic, i.e. C_k(Y) is a continuous image of irrationals J. Let S ≃ {0} ∪ {n⁻¹ : n ∈ N}. S ∈ Δ, Y ∉ Δ!

- Indeed, Y metrizable separable, |Y| = c s.t. C_k(Y) is analytic, i.e. C_k(Y) is a continuous image of irrationals J. Let S ≃ {0} ∪ {n⁻¹ : n ∈ N}. S ∈ Δ, Y ∉ Δ!
- $C_p(S)$ contains a closed homeom. copy of J. There is a continuous surjection $L: J \to C_k(Y)$ which extends to a continuous (not linear) surjection $T: C_p(S) \to C_k(Y)$.

- Indeed, Y metrizable separable, |Y| = c s.t. C_k(Y) is analytic, i.e. C_k(Y) is a continuous image of irrationals J. Let S ≃ {0} ∪ {n⁻¹ : n ∈ N}. S ∈ Δ, Y ∉ Δ!
- $C_p(S)$ contains a closed homeom. copy of J. There is a continuous surjection $L: J \to C_k(Y)$ which extends to a continuous (not linear) surjection $T: C_p(S) \to C_k(Y)$.
- If X, Y are compact and there is a continuous linear surjection $C_p(X) \rightarrow C_p(Y)$ and dim X = 0, then dim Y = 0. (Kawamura-Leiderman).

- Indeed, Y metrizable separable, |Y| = c s.t. C_k(Y) is analytic, i.e. C_k(Y) is a continuous image of irrationals J. Let S ≃ {0} ∪ {n⁻¹ : n ∈ N}. S ∈ Δ, Y ∉ Δ!
- $C_p(S)$ contains a closed homeom. copy of J. There is a continuous surjection $L: J \to C_k(Y)$ which extends to a continuous (not linear) surjection $T: C_p(S) \to C_k(Y)$.
- If X, Y are compact and there is a continuous linear surjection $C_p(X) \rightarrow C_p(Y)$ and dim X = 0, then dim Y = 0. (Kawamura-Leiderman).
- We have however the following general

- Indeed, Y metrizable separable, |Y| = c s.t. C_k(Y) is analytic, i.e. C_k(Y) is a continuous image of irrationals J. Let S ≃ {0} ∪ {n⁻¹ : n ∈ N}. S ∈ Δ, Y ∉ Δ!
- $C_p(S)$ contains a closed homeom. copy of J. There is a continuous surjection $L: J \to C_k(Y)$ which extends to a continuous (not linear) surjection $T: C_p(S) \to C_k(Y)$.
- If X, Y are compact and there is a continuous linear surjection $C_p(X) \rightarrow C_p(Y)$ and dim X = 0, then dim Y = 0. (Kawamura-Leiderman).
- We have however the following general

Theorem 16 (Kąkol, Michalak, Leiderman)

If X and Y are inf. Tychonoff and there is a seq. continuous linear surjection $T : C_p(X) \to C_k(Y)_w$, every compact set in Y is finite, where $C_k(Y)_w$ endowed with the weak topology.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Proposition 17

Assume that Y is ℓ -dominated by X. If X is Eberlein compact, Y is Eberlein compact. If X is scattered Eberlein compact, Y is scattered Eberlein compact.

(日本) (日本) (日本)

Proposition 17

Assume that Y is ℓ -dominated by X. If X is Eberlein compact, Y is Eberlein compact. If X is scattered Eberlein compact, Y is scattered Eberlein compact.

2 Next result extends Baars theorem; apply Theorem 15.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Proposition 17

Assume that Y is ℓ -dominated by X. If X is Eberlein compact, Y is Eberlein compact. If X is scattered Eberlein compact, Y is scattered Eberlein compact.

2 Next result extends Baars theorem; apply Theorem 15.

Proposition 18

Let X and Y be metrizable and Y is ℓ -dominated by X. If X is scattered, then Y is scattered.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition 17

Assume that Y is ℓ -dominated by X. If X is Eberlein compact, Y is Eberlein compact. If X is scattered Eberlein compact, Y is scattered Eberlein compact.

2 Next result extends Baars theorem; apply Theorem 15.

Proposition 18

Let X and Y be metrizable and Y is ℓ -dominated by X. If X is scattered, then Y is scattered.

It is unknown if metrizability of X and Y can be dropped.

JERZY KAKOL On Δ -spaces X and their characterization in terms of space

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Find scattered compact X, Y s.t. $X \in \Delta$, $Y \notin \Delta$ and there exists a continuous linear surjection from C(X) onto C(Y).

<ロ> (四) (四) (三) (三) (三)

Find scattered compact X, Y s.t. $X \in \Delta$, $Y \notin \Delta$ and there exists a continuous linear surjection from C(X) onto C(Y).

• A topological space X is Fréchet-Urysohn (F-U) if $\forall A \subset X, x \in \overline{A} \exists x_n \in A, x_n \to x.$

イロト イポト イヨト イヨト 二日

Find scattered compact X, Y s.t. $X \in \Delta$, $Y \notin \Delta$ and there exists a continuous linear surjection from C(X) onto C(Y).

A topological space X is Fréchet-Urysohn (F-U) if ∀
 A ⊂ X, x ∈ A ∃ x_n ∈ A, x_n → x.

Proposition 20

If X is compact Eberlein, $C_p(X)$ is F-U iff X is a Δ -space.

Find scattered compact X, Y s.t. $X \in \Delta$, $Y \notin \Delta$ and there exists a continuous linear surjection from C(X) onto C(Y).

A topological space X is Fréchet-Urysohn (F-U) if ∀
 A ⊂ X, x ∈ A ∃ x_n ∈ A, x_n → x.

Proposition 20

If X is compact Eberlein, $C_p(X)$ is F-U iff X is a Δ -space.

2 $X = [0, \omega_1] \notin \Delta$ is not Eberlein compact, $C_p(X)$ is F-U.

((月)) (日) (日) (日)

Find scattered compact X, Y s.t. $X \in \Delta$, $Y \notin \Delta$ and there exists a continuous linear surjection from C(X) onto C(Y).

A topological space X is Fréchet-Urysohn (F-U) if ∀
 A ⊂ X, x ∈ A ∃ x_n ∈ A, x_n → x.

Proposition 20

If X is compact Eberlein, $C_p(X)$ is F-U iff X is a Δ -space.

2 $X = [0, \omega_1] \notin \Delta$ is not Eberlein compact, $C_p(X)$ is F-U.

Problem 21

Characterize compact Δ -spaces X in terms of suitable topological properties of the Banach space C(X) or its dual.

Find scattered compact X, Y s.t. $X \in \Delta$, $Y \notin \Delta$ and there exists a continuous linear surjection from C(X) onto C(Y).

A topological space X is Fréchet-Urysohn (F-U) if ∀
 A ⊂ X, x ∈ A ∃ x_n ∈ A, x_n → x.

Proposition 20

If X is compact Eberlein, $C_p(X)$ is F-U iff X is a Δ -space.

• $X = [0, \omega_1] \notin \Delta$ is not Eberlein compact, $C_p(X)$ is F-U.

Problem 21

Characterize compact Δ -spaces X in terms of suitable topological properties of the Banach space C(X) or its dual.

• If X is a compact Δ -space, then C(X) is Asplund.

Theorem 22

Assume that Y is ℓ -dominated by X. If X is a Δ -space, then Y also is a Δ -space.

Lemma 23

Let X and Y be two sets and let $E \subset \mathbb{R}^X$ and $F \subset \mathbb{R}^Y$ be dense vector subspaces of \mathbb{R}^X and \mathbb{R}^Y , respectively. Assume that $T : E \longrightarrow F$ is a continuous linear surjection between lcs E and F. Then T admits a continuous linear surjective (unique) extension $\widehat{T} : \mathbb{R}^X \longrightarrow \mathbb{R}^Y$.

(1日) (1日) (1日)

Proof. We need some facts:

Property 1. Every closed vector subspace H of \mathbb{R}^X is complemented in \mathbb{R}^X and the quotient \mathbb{R}^X/H is linearly homeomorphic to the product \mathbb{R}^Z for some set Z. Property 2. The product topology on \mathbb{R}^X is minimal, i.e. \mathbb{R}^X does not admit a weaker Hausdorff locally convex topology. Property 3. \mathbb{R}^{Y} fulfills the extension property, i.e. if M is a vector subspace of a lcs L, then every continuous linear mapping $T: M \longrightarrow \mathbb{R}^{Y}$ admits a continuous linear extension $\widehat{T}: L \longrightarrow \mathbb{R}^{Y}$. By Property 3, there exists a continuous linear extension $\widehat{T} : \mathbb{R}^X \longrightarrow \mathbb{R}^Y$ of T such that $F \subset \widehat{T}(\mathbb{R}^X)$. We prove that \widehat{T} is a surjective mapping.

(日) (局) (三) (三) (三)

Denote by $\varphi : \mathbb{R}^X / \ker(\widehat{T}) \longrightarrow \mathbb{R}^Y$ the injective mapping associated with the quotient mapping $Q: \mathbb{R}^X \longrightarrow \mathbb{R}^X / \ker(\widehat{T})$, where $\ker(\widehat{T})$ is the kernel of \widehat{T} and $\varphi \circ Q = \widehat{T}$. By Property 1, the space $\mathbb{R}^X / \ker(\widehat{T})$ is linearly homeomorphic to the product \mathbb{R}^Z for some set Z. So we may assume that φ is a continuous linear bijection from \mathbb{R}^Z onto a dense subspace $\widehat{T}(\mathbb{R}^X)$ of \mathbb{R}^Y . This implies that on $\widehat{T}(\mathbb{R}^X)$ there exists a stronger locally convex topology ξ such that $(\widehat{T}(\mathbb{R}^X),\xi)$ is linearly homeomorphic with \mathbb{R}^Z . However, by Property 2, \mathbb{R}^Z does not admit a weaker Hausdorff locally convex topology, hence $\widehat{\mathcal{T}}(\mathbb{R}^X)$ is isomorphic to the complete Ics \mathbb{R}^Z . Finally, $\widehat{T}(\mathbb{R}^X)$ is closed in \mathbb{R}^Y and then \widehat{T} is a surjection.

First Proof. Let $T: C_p(X) \longrightarrow C_p(Y)$ be a continuous linear surjection. Denote by $\widehat{T} : \mathbb{R}^X \longrightarrow \mathbb{R}^Y$ the extension of T which is supplied by Lemma 23. By Theorem 2, $C_p(X)$ is distinguished and we can apply item (c) of Theorem 2. Take arbitrary $f \in \mathbb{R}^{Y}$. There exists $g \in \mathbb{R}^{X}$ with $\widehat{T}(g) = f$. Then there exists a bounded set $B \subset C_p(X)$ such that $g \in \overline{B}^{\mathbb{R}^X}$. We define A = T(B). It is easy to see that A is bounded and $f \in \overline{A}^{\mathbb{R}^{Y}}$ which means that $C_{p}(Y)$ is distinguished, equivalently, Y is a Δ -space, by Theorem 2.

(同) (三) (三) (三)

Second Proof. If $T: C_n(X) \longrightarrow C_n(Y)$ is a continuous linear surjection, then the adjoint mapping $T^*: (L_p(Y), \beta_Y) \longrightarrow (L_p(X), \beta_X)$ is continuous and injective, where β_X and β_Y are the strong topologies on the duals $L_p(X)$ and $L_p(Y)$, respectively. Denote by $Z = T^*(L_p(Y))$. Endow Z with the induced topology $\beta_X \upharpoonright_{\mathcal{T}}$. Since $T^*: (L_p(Y), \beta_Y) \to (Z, \beta_X | Z)$ is a continuous linear bijection, the sets $T^*(U)$, where U run over all absolutely convex neighbourhoods of zero in $(L_p(Y), \beta_Y)$, form a base of absolutely convex neighbourhoods of zero for a locally convex topology ξ on X such that $\beta_X \upharpoonright_Z < \xi$ and $T^*: (L_p(Y), \beta_Y) \longrightarrow (Z, \xi)$ is a linear homeomorphism.

Since $C_p(X)$ is distinguished, the topology β_X is the finest locally convex topology, by item (c) of Theorem 2. The property of having the finest locally convex topology is inherited by vector subspaces, so the induced topology $\beta_X \upharpoonright_Z$ is the finest locally convex one. Then $\beta_X \upharpoonright_Z = \xi$ is the finest locally convex topology, so β_Y is of the same type on $L_p(Y)$. Hence $C_p(Y)$ is distinguished, by Theorem 2, equivalently, Y is a Δ -space, again by Theorem 2.

Several open problems have been posed in the following direction: Suppose that a dense subspace of $C_p(X)$ is a "nice" (not necessarily linear) continuous image of \mathbb{R}^{κ} , for some cardinal κ ; must X be discrete? Lemma 23 implies immediately

Corollary 24

Let a dense subspace of $C_p(X)$ be a continuous linear image of \mathbb{R}^{κ} , for some cardinal κ . Then X is discrete.

For simplicity, a topological space X is called a Q-space if each subset of X is F_{σ} , or, equivalently, each subset of X is G_{δ} in X.

Theorem 25

X, Y - normal. Assume Y is I-dominated by X. If X is a Q-space, then Y is a Q-space.

Proof. Normal X is a Q-space iff X is strongly splittable, i.e. for every $f \in \mathbb{R}^X$ there exists a sequence $S = \{f_n : n \in \omega\} \subset C_n(X)$ such that $f_n \to f$ in \mathbb{R}^X . Let $T: C_p(X) \longrightarrow C_p(Y)$ be a continuous linear surjection. Denote by $\widehat{T} : \mathbb{R}^X \longrightarrow \mathbb{R}^Y$ the extension of T which is supplied by Lemma 23. Take arbitrary $f \in \mathbb{R}^{Y}$. There exists $g \in \mathbb{R}^X$ with $\widehat{T}(g) = f$. Then there exists a sequence $B \subset C_p(X)$ converging to g in \mathbb{R}^X . We define A = T(B). It is easy to see that $A \subset C_p(Y)$ converges to f in \mathbb{R}^Y .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日