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A bit of history related with ∆-sets....

1 An uncountable D ⊂ R is a ∆-set if for any decreasing
sequence (Hn)n of subsets of D with

⋂
n Hn = ∅ there is a

sequence (Vn)n of Gδ-subsets of D s.t. Hn ⊂ Vn, n ∈ N,
and

⋂
n Vn = ∅ (Reed 1975).

2 Research around ∆-sets and Q-sets (D ⊂ R is a Q-set if
each subset of D is Gδ in D) are still fundamental
challenges in set theory.

3 Reed showed: the term ”Gδ” can be replaced with "open".
4 The existence of a ∆-set is equivalent to the existence of

a countably paracompact (every countable open cover has
a locally �nite open re�nement), separable non-normal
Moore space (Przymusi«ski).

5 See also R. W. Knight, ∆-Sets, Trans. Amer. Math. Soc.
339 (1993), 45-60.
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1 The existence of a Q-set is a fundamental question of set
theory considered by Hausdor�, Sierpinski, Rothberger
over thirty years ago, and by many others.

2 The existence of uncountable Q-sets is independent of
ZFC. Q-set ⇒ ∆-set; consistently the converse fails.

3 Judah, Shelah constructed a model where a Q-set exists.
4 Martin's Axiom plus the negation of (CH) implies that

every subset X of R with |X | < c is a Q-set, (hence is a
∆-set) (Fleissner, Miller, M. Rudin).

5 No ∆-set can have cardinality c, therefore Continuum
Hypothesis implies that there is no uncountable ∆-set of
reals (Przymusi«ski).

6 Uncountable ∆-sets of reals exist or not, depending on a
model of the set theory.
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De�nition 1 (Ka�kol-Leiderman)

A topological space X is called a ∆-space if for every
decreasing sequence (Dn)n of subsets of X with

⋂
n Dn = ∅,

there is a decreasing sequence (Vn)n of open subsets of X ,
Dn ⊂ Vn for every n ∈ N and

⋂
n Vn = ∅.

1 The existence of an uncount. separable metrizable
∆-space is equiv. to the existence of an uncount. ∆-set.

2 Indeed, every separable metrizable space embeds into a
Polish space RN, and RN is a one-to-one continuous
image of irrationals J . Hence, if M is uncountable
separable metrizable, there exist an uncountable set
X ⊂ R and a one-to-one continuous surjection X → M .
Clearly X is a ∆-set provided M is a ∆-space.

3 Non-metrizable ∆-spaces exist in ZFC.
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Some examples of not ∆-spaces (F-K-L-S).

1 Cosmic X with |X | = c.
2 Under (MA) and negation (CH) every cosmic X with
|X | < c is a ∆-space.

3 The Sorgenfrey line S .
4 The Michael line.
5 The double arrow space.
6 Hered. separable X with |X | = c (Szeptycki, Leiderman).
7 Each Tychono� space X such that |X | = 22

d(X )
.

8 Each separable X with |X | = 2c .
9 Hence βQ, βR and βN are not ∆-spaces. What about

positive examples ?
10 Cp(X ), Ck(X ) - spaces of all real-valued cont. functions

on Tychono� X with the pointwise and the compact-open
topology, respectively.
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1 Cp(X ) is called distinguished if for each bounded A ⊂ RX

there is bounded B ⊂ Cp(X ) with A ⊂ B , the closure in
RX (Ferrando, Ka�kol, Leiderman, Saxon)

.

Theorem 2

The following statements are equivalent for Tychono� X :

(a) Dual Cp(X )′β = (Lp(X ), β(Lp(X ),Cp(X )) carries the
�nest l.c. topology, where Lp(X ) = span{δx : x ∈ X}.

(b) The space Cp(X ) is distinguished.

(c) ∀ f ∈ RX ∃ bounded B ⊂ Cp(X ) with f ⊂ B , the closure
in RX (Ferrando, Ka�kol, Leiderman,Saxon).

(d) X is a ∆-space (Ka�kol, Leiderman).

From (c)⇒ Every countable Tychono� space is a ∆-space.
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1 X is scattered if every nonempty subset A ⊂ X has an
isolated point in A.

2 When a ∆-space is scasttered?

Theorem 3 (Ka�kol-Leiderman (PAMS))

Every �ech-complete (hence compact) ∆-space is scattered.
Every countably compact ∆-space is scattered.

3 Theorem 3 extends also a result of Knaster-Urbanik that
every countable �ech-complete space is scattered.

Corollary 4

If X is a �rst-countable compact space, then X is a ∆-space
i� X is countable.
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1 Eberlein compact is a compact space homeomorphic to a
subset of a Banach space with the weak topology.

2 A compact space is Corson compact if it can be
embedded in a Σ-product of R.

3 Every Eberlein compact is Corson, every scattered Corson
compact space is a scattered Eberlein (Alster).

4 The most simple non-metrizable scattered Eberlein
compact: Alexandrov comp. αX , X uncountable discrete.

Theorem 5 (Ferrando, Ka�kol, Leiderman, Saxon)

An Eberlein compact space X is a ∆-space i� X is scattered.
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Theorem 6 (Leiderman-Tkachuk(Monatsh.))

A pseudocompact ∆-space X with countable tightness is
scattered.

1 An example of a compact scattered ∆-space X

which is not Eberlein compact

:

2 Let A be an almost disjoint family of subsets of N. The
Isbell-Mrówka space Ψ(A) has N ∪ A as the underlying
set equipped with the topology de�ned as follows:

3 For each n ∈ N, the set {n} is open, and for each A ∈ A,
a base of neighbourhoods of A is the family of all sets
{A} ∪ (A \ F ), where F runs over all �nite subsets of N.

4 Then Ψ(A) is a �rst-countable separable locally compact
Tychono� space.
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Theorem 7 (Ka�kol-Leiderman)

There exists a separable scattered compact space X which is a
∆-space not being Eberlein compact.

1 Skech of the proof: Let A be any uncountable almost
disjoint family of subsets of N , let Z = Ψ(A).

2 One shows Z is a scattered ∆-space. Let X = the
one-point compacti�cation of Z . Then X is a ∆-space.

3 X is not Eberlein, since every separable Eberlein compact
space is metrizable, but Ψ(A) is metrizable i� A is
countable.
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There are compact scattered spaces which are not

∆-spaces.

Theorem 8 (Ka�kol-Leidermnan)

The compact scattered space [0, ω1] is not a ∆-space.

1 Since every in�nite compact scattered space X contains a
nontrivial converging sequence, for such X the Banach
space C (X ) is not a Grothendieck space.

Corollary 9

If X is an in�nite compact space and X ∈ ∆, then the Banach
space C (X ) is not a Grothendieck space. The converse fails,
as X = [0, ω1] applies.
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Each scattered metrizable X is a ∆-space: Every such
X is �ech-complete (Tkachuk), and apply Theorem 5. There
exist scattered X not being �ech-complete; every second
countable scattered is �ech-complete (Knaster, Urbanik).

Proposition 10 (Ka�kol-Leiderman)

Any σ-scattered metrizable (and separable) space is a ∆-space
(and countable).

(2) below extend Przymusi«ski's fact for ∆-sets in R.

Corollary 11

(1) The existence of an uncountable sep. metrizable ∆-space
is independent of ZFC.

(2) There is an uncountable sep. metrizable ∆-space i� there
is a sep. countably paracompact non-normal Moore space.
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1 Is the class ∆ invariant under the basic topological
operations? The following known fact implies that a
continuous image of a ∆-space need not be a ∆-space.

Proposition 12 (Hrŭsák)

There exists in ZFC a family A on N such that the
corresponding Isbell�Mrówka space Ψ(A) admits a continuous
mapping onto the closed interval [0, 1].

Proposition 13

Assume X is a countable union of closed subsets Xn each of
them is a ∆-space. Then X is a ∆-space.

Corollary 14

Cont. images of Lindelöf �ech-complete ∆-spaces are ∆-sp.
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1 Following A. V. Arkhangel'skii we say that a top. space Y

is `-dominated by a top. space X if Cp(X ) can be
mapped onto Cp(Y ) by a linear continuous map T .

2 Recall the following general motivation fact: For
Tychono� spaces X and Y , the rings Cp(X ) and Cp(Y )

are topologically isomorphic i� X and Y are
homeomorphic (Nagata).

Theorem 15 (Ka�kol-Leiderman)

Assume that Y is `-dominated by X . If X is a ∆-space, then
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1 Indeed, Y - metrizable separable, |Y | = c s.t. Ck(Y ) is
analytic, i.e. Ck(Y ) is a continuous image of irrationals J .
Let S ' {0} ∪ {n−1 : n ∈ N}. S ∈ ∆, Y 6∈ ∆!

2 Cp(S) contains a closed homeom. copy of J . There is a
continuous surjection L : J → Ck(Y ) which extends to a
continuous (not linear) surjection T : Cp(S)→ Ck(Y ).

3 If X , Y are compact and there is a continuous linear
surjection Cp(X )→ Cp(Y ) and dim X = 0, then dim
Y = 0. (Kawamura-Leiderman).

4 We have however the following general

Theorem 16 (Ka�kol, Michalak, Leiderman)

If X and Y are inf. Tychono� and there is a seq. continuous
linear surjection T : Cp(X )→ Ck(Y )w , every compact set in
Y is �nite, where Ck(Y )w endowed with the weak topology.
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1 Next is a combination of a few known facts, while we
apply Theorem 15 to get the scatteredness of Y . Recall
Eberlein compact X is scattered i� X is a ∆-space.

Proposition 17

Assume that Y is `-dominated by X . If X is Eberlein
compact, Y is Eberlein compact. If X is scattered Eberlein
compact, Y is scattered Eberlein compact.

2 Next result extends Baars theorem; apply Theorem 15.

Proposition 18

Let X and Y be metrizable and Y is `-dominated by X . If X
is scattered, then Y is scattered.

3 It is unknown if metrizability of X and Y can be dropped.
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Problem 19

Find scattered compact X , Y s.t. X ∈ ∆, Y /∈ ∆ and there
exists a continuous linear surjection from C (X ) onto C (Y ).

1 A topological space X is Fréchet-Urysohn (F-U) if ∀
A ⊂ X , x ∈ A ∃ xn ∈ A, xn → x .

Proposition 20

If X is compact Eberlein, Cp(X ) is F-U i� X is a ∆-space.

2 X = [0, ω1] 6∈ ∆ is not Eberlein compact, Cp(X ) is F-U.

Problem 21
Characterize compact ∆-spaces X in terms of suitable
topological properties of the Banach space C (X ) or its dual.

3 If X is a compact ∆-space, then C (X ) is Asplund.
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Theorem 22

Assume that Y is `-dominated by X . If X is a ∆-space, then
Y also is a ∆-space.

Lemma 23

Let X and Y be two sets and let E ⊂ RX and F ⊂ RY be
dense vector subspaces of RX and RY , respectively. Assume
that T : E −→ F is a continuous linear surjection between lcs
E and F . Then T admits a continuous linear surjective
(unique) extension T̂ : RX −→ RY .
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Proof. We need some facts:
Property 1. Every closed vector subspace H of RX is
complemented in RX and the quotient RX/H is linearly
homeomorphic to the product RZ for some set Z .
Property 2. The product topology on RX is minimal, i.e. RX

does not admit a weaker Hausdor� locally convex topology.
Property 3. RY ful�lls the extension property, i.e. if M is a
vector subspace of a lcs L, then every continuous linear
mapping T : M −→ RY admits a continuous linear extension
T̂ : L −→ RY . By Property 3, there exists a continuous linear
extension T̂ : RX −→ RY of T such that F ⊂ T̂ (RX ). We
prove that T̂ is a surjective mapping.
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Denote by ϕ : RX/ ker(T̂ ) −→ RY the injective mapping
associated with the quotient mapping
Q : RX −→ RX/ ker(T̂ ), where ker(T̂ ) is the kernel of T̂ and
ϕ ◦ Q = T̂ . By Property 1, the space RX/ ker(T̂ ) is linearly
homeomorphic to the product RZ for some set Z . So we may
assume that ϕ is a continuous linear bijection from RZ onto a
dense subspace T̂ (RX ) of RY . This implies that on T̂ (RX )

there exists a stronger locally convex topology ξ such that
(T̂ (RX ), ξ) is linearly homeomorphic with RZ . However, by
Property 2, RZ does not admit a weaker Hausdor� locally
convex topology, hence T̂ (RX ) is isomorphic to the complete
lcs RZ . Finally, T̂ (RX ) is closed in RY and then T̂ is a
surjection.
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First Proof. Let T : Cp(X ) −→ Cp(Y ) be a continuous
linear surjection. Denote by T̂ : RX −→ RY the extension of
T which is supplied by Lemma 23. By Theorem 2, Cp(X ) is
distinguished and we can apply item (c) of Theorem 2. Take
arbitrary f ∈ RY . There exists g ∈ RX with T̂ (g) = f . Then

there exists a bounded set B ⊂ Cp(X ) such that g ∈ B
RX

. We
de�ne A = T (B). It is easy to see that A is bounded and

f ∈ A
RY

which means that Cp(Y ) is distinguished,
equivalently, Y is a ∆-space, by Theorem 2.
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Second Proof. If T : Cp(X ) −→ Cp(Y ) is a continuous
linear surjection, then the adjoint mapping
T ∗ : (Lp(Y ), βY ) −→ (Lp(X ), βX ) is continuous and injective,
where βX and βY are the strong topologies on the duals Lp(X )

and Lp(Y ), respectively. Denote by Z = T ∗(Lp(Y )). Endow
Z with the induced topology βX �Z . Since
T ∗ : (Lp(Y ), βY )→ (Z , βX |Z ) is a continuous linear bijection,
the sets T ∗(U), where U run over all absolutely convex
neighbourhoods of zero in (Lp(Y ), βY ), form a base of
absolutely convex neighbourhoods of zero for a locally convex
topology ξ on X such that βX �Z≤ ξ and
T ∗ : (Lp(Y ), βY ) −→ (Z , ξ) is a linear homeomorphism.
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Since Cp(X ) is distinguished, the topology βX is the �nest
locally convex topology, by item (c) of Theorem 2. The
property of having the �nest locally convex topology is
inherited by vector subspaces, so the induced topology βX �Z is
the �nest locally convex one. Then βX �Z= ξ is the �nest
locally convex topology, so βY is of the same type on Lp(Y ).
Hence Cp(Y ) is distinguished, by Theorem 2, equivalently, Y
is a ∆-space, again by Theorem 2.
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Several open problems have been posed in the following
direction: Suppose that a dense subspace of Cp(X ) is a "nice"
(not necessarily linear) continuous image of Rκ, for some
cardinal κ; must X be discrete? Lemma 23 implies
immediately

Corollary 24

Let a dense subspace of Cp(X ) be a continuous linear image of
Rκ, for some cardinal κ. Then X is discrete.

For simplicity, a topological space X is called a Q-space if each
subset of X is Fσ, or, equivalently, each subset of X is Gδ in X .
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Theorem 25

X , Y - normal. Assume Y is l -dominated by X . If X is a
Q-space, then Y is a Q-space.

Proof. Normal X is a Q-space i� X is strongly splittable, i.e.
for every f ∈ RX there exists a sequence
S = {fn : n ∈ ω} ⊂ Cp(X ) such that fn → f in RX . Let
T : Cp(X ) −→ Cp(Y ) be a continuous linear surjection.
Denote by T̂ : RX −→ RY the extension of T which is
supplied by Lemma 23. Take arbitrary f ∈ RY . There exists
g ∈ RX with T̂ (g) = f . Then there exists a sequence
B ⊂ Cp(X ) converging to g in RX . We de�ne A = T (B). It is
easy to see that A ⊂ Cp(Y ) converges to f in RY .
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